

TRACE-RICE with Grant nº 1934, is part of the PRIMA Programme supported under Horizon 2020, the European Union's Framework Programme for Research and Innovation

TECHNICAL REFERENCES

Project Acronym TRACE-RICE

Project Coordinator Carla Moita Brites

carla.brites@iniav.pt

Project Duration September 2020 –October 2024 (50 months)

Deliverable No. D1.6

Dissemination level* CONFIDENTIAL

Work Package WP 1 - TEST SOLUTIONS FOR AUTHENTICITY, ORIGIN AND TRACEABILITY

Task TASK 1.4 BUILD PREDICTIVE GENERATION MODELS

Lead beneficiary INIAV

Contributing beneficiary/ies

Due date of deliverable 31th October 2024

Actual submission date 17 December 2024

	Date	Beneficiary	Change
V1	31/10/2024	INIAV	Version sent to coordinator
V2	18/12/2024	INIAV	Final version approved by project coordinator

Written by: Pedro Sampaio & Carla Brites

EXECUTIVE SUMMARY

The TRACE-RICE project has developed advanced predictive models to assess rice quality traits, such as amylose content and viscosity profiles, and classify rice types. These models leverage Near-Infrared (NIR) spectroscopy and are hosted on the DMPortal, the national Dataverse instance managed by Biodata.pt. DMPortal serves as a long-term centralized repository for genomic, phenotypic, and associated metadata generated under the TRACE-RICE project. The models can be accessed at:

Predictive Models for Rice Quality Traits Using MATLAB - TRACE-RICE Dataverse

These models were developed using MATLAB (R2023a) and integrate cutting-edge techniques, including:

- Partial Least Squares (PLS)
- Partial Least Squares Discriminant Analysis (PLS-DA)
- Support Vector Machines (SVM)
- Machine Learning
- Artificial Neural Networks (ANN)

The PLS, iPLS, siPLS, and mwPLS models were implemented with MATLAB and the **iToolbox** (available at http://www.models.life.ku.dk/itoolbox), while classification procedures utilized the **Classification Toolbox (v2.0)** from Milano Chemometrics and QSAR Research Group (http://michem.disat.unimib.it/chm).

Methodology Overview

The workflow began with the collection of raw NIR spectra from rice samples using a transflection setup. These spectra were preprocessed with industry-standard techniques, such as:

- Standard Normal Variate (SNV) Transformation
- Multiplicative Scatter Correction (MSC)
- Smoothing Derivative Algorithms

After preprocessing, predictive models were developed using supervised and unsupervised techniques, including:

- Principal Component Analysis (PCA)
- Partial Least Squares Discriminant Analysis (PLS-DA)
- Support Vector Machines (SVM)
- k-Nearest Neighbors (KNN)

These models enable precise predictions of rice authenticity and key quality traits, facilitating advanced classification and quality control measures.

Dataset Components

The dataset hosted on the Dataverse repository includes the following models:

- 1. AMYLOSE MODEL FOOD CHEMISTRY
 - A MATLAB-based model for predicting amylose content using NIR spectroscopy and PLS chemometric algorithms.

2. PLS-DA_SVM_MODELS

 MATLAB-based models for identifying rice flour types using PLS-DA and SVM methods.

3. ANN_MODELS_ApSci

 Machine learning-based MATLAB models for predicting rice pasting parameters using NIR spectroscopy.

4. ANN_MODELS_PASTING_FOODS

 MATLAB-based ANN models for evaluating rice quality based on grain physical parameters.

C

Model Distribution

All models are provided as .mat files in a compressed .rar format. Each model includes performance metrics to ensure reproducibility and facilitate evaluation.

TRACE-RICE Consortium

